Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(11): e2123353119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275795

RESUMO

SignificanceAlthough plastid division is critical for plant development, how components of the plastid division machinery (PDM) are imported into plastids remains unexplored. A forward genetic screen to identify suppressors of a crumpled leaf (crl) mutant deficient in plastid division led us to find dominant gain-of-function (GF) mutations in TIC236, which significantly increases the import of PDM components and completely rescues crl phenotypes. The defective plastid division phenotypes in crl and tic236-knockdown mutants and CRL-TIC236 association in a functional complex indicate that the CRL-TIC236 module is vital for plastid division. Hence, we report the first GF translocon mutants and unveil CRL as a novel functional partner of TIC236 for PDM import.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Proteínas de Cloroplastos , Proteínas de Membrana Transportadoras , Plastídeos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Mutação com Ganho de Função , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Transporte Proteico
2.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829988

RESUMO

Low and high temperatures are life-threatening stress factors, diminishing plant productivity. One of the earliest responses of plants to stress is a rapid burst of reactive oxygen species (ROS) in chloroplasts. Widespread efforts over the past decade shed new light on the chloroplast as an environmental sensor, translating the environmental fluctuation into varying physiological responses by utilizing distinct retrograde (chloroplast-to-nucleus) signals. Recent studies have unveiled that chloroplasts mediate a similar unfolded/misfolded/damaged protein response (cpUPR) as observed in the endoplasmic reticulum and mitochondria. Although observing cpUPR is not surprising since the chloroplast is a prime organelle producing harmful ROS, the intertwined relationship among ROS, protein damage, and chloroplast protein quality controls (cpPQCs) with retrograde signaling has recently been reported. This finding also gives rise to critical attention on chloroplast proteins involved in cpPQCs, ROS detoxifiers, transcription/translation, import of precursor proteins, and assembly/maturation, the deficiency of which compromises chloroplast protein homeostasis (proteostasis). Any perturbation in the protein may require readjustment of proteostasis by transmitting retrograde signal(s) to the nucleus, whose genome encodes most of the chloroplast proteins involved in proteostasis. This review focuses on recent findings on cpUPR and chloroplast-targeted FILAMENTOUS TEMPERATURE-SENSITIVE H proteases involved in cpPQC and retrograde signaling and their impacts on plant responses to temperature stress.


Assuntos
Cloroplastos/genética , Metaloproteases/genética , Estresse Fisiológico/genética , Resposta a Proteínas não Dobradas/genética , Retículo Endoplasmático/genética , Espécies Reativas de Oxigênio/metabolismo , Temperatura
3.
Plant J ; 104(4): 964-978, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860438

RESUMO

The photosynthetic bacterial phycobiliprotein lyases, also called CpcT lyases, catalyze the biogenesis of phycobilisome, a light-harvesting antenna complex, through the covalent attachment of chromophores to the antenna proteins. The Arabidopsis CRUMPLED LEAF (CRL) protein is a homolog of the cyanobacterial CpcT lyase. Loss of CRL leads to multiple lesions, including localized foliar cell death, constitutive expression of stress-related nuclear genes, abnormal cell cycle, and impaired plastid division. Notwithstanding the apparent phenotypes, the function of CRL still remains elusive. To gain insight into the function of CRL, we examined whether CRL still retains the capacity to bind with the bacterial chromophore phycocyanobilin (PCB) and its plant analog phytochromobilin (PΦB). The revealed structure of the CpcT domain of CRL is comparable to that of the CpcT lyase, despite the low sequence identity. The subsequent in vitro biochemical assays found, as shown for the CpcT lyase, that PCB/PΦB binds to the CRL dimer. However, some mutant forms of CRL, substantially compromised in their bilin-binding ability, still restore the crl-induced multiple lesions. These results suggest that although CRL retains the bilin-binding pocket, it seems not functionally associated with the crl-induced multiple lesions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cianobactérias/enzimologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Pigmentos Biliares/metabolismo , Divisão Celular , Liases/genética , Mutação , Fenótipo , Ficobilinas/metabolismo , Ficobiliproteínas/metabolismo , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Plastídeos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...